Analysis of gene copy number changes in tumor phylogenetics

Jijun Tang

jtang@cse.sc.edu

Tuesday 4th April, 2017

Jijun Tang (CSE)

Tuesday 4th April, 2017 1 / 40

Background Fluorescence in Situ Hybridization(FISH) Rectilinear Minimum Spanning Tree(RMST) FISHtree(An earlier method)

 An iterative approach for phylogenetic analysis of tumor progression using FISH copy_number(iFISHtree) Methods and experimental design Results

³ <u>Maximum parsimony analysis of gene copy number data(mpFISHtree)</u> <u>Methods and experimental design</u> <u>Results</u>

Large scale change(WGD) considered

Background

< ロ > < 同 > < 回 > < 回 >

Fluorescence in Situ Hybridization (FISH)

Jijun Tang (CSE)

FISH data				
	LAMP3	PROXI	PRKAAI	
Cell I	2	1	2	
Cell 2	4	1	3	
Cell 3	3	3	2	

Distance matrix

	Cell I	Cell 2	Cell 2
Cell I	0	3	3
Cell 2	3	0	4
Cell 3	3	4	0

Minimum Spanning Tree

Jijun Tang (CSE)

Rectilinear Minimum Spanning Tree

Tuesday 4th April, 2017 8 / 40

< ロ > < 同 > < 回 > < 回 >

FISHtree (An earlier method by Chowdhury et al)

```
Input: a set S of k cell count patterns on d gene probes
Output: a tree with additional steiner nodes if needed and k nodes that
correspond to k input cell count patterns respectively
Initialization: the initial tree T_0 = a Minimum Spanning tree on k cell count
patterns under the rectilinear metric
Calculate Minimum Spanning Network (MSN) on S
Identify all 3-node subsets of MSN, T, where at least two pairs of nodes out of
the 3 nodes are connected
for each element T_i of T do
   Identify candidate Steiner node set L by taking combination of the values of
coordinate axes of the points in T_i
   for each element L_i of L do
        Identify MST on \{S \cup L_i\}
        Let current_m st_w eight = weight({S \cup L_i}) if
          current mst weight < min weight then
             min_weight = curren_mst_weight
             S = S \cup L_i
             steinertree = MST({S})
Output steiner tree and min weight
                                                            Tuesday 4<sup>th</sup> April. 2017
```

9/40

Jijun Tang (CSE)

Cancer	Gene marker	Primary	Metastasis
Cervical	LAMP3 PROX1 PRKAA1 CCND1	31	16
Breast	COX-2 MYC CCND1 HER-2 ZNF217 DBC2 CDH1 p53	13	12

Table: Real dataset. The dataset contains cervical and breast cancer samples.

Infer RMST from MST and full binary tree

Jijun Tang (CSE)

An iterative approach for phylogenetic analysis of cancer FISH data(iFISHtree)

iFISHtree \rightarrow Median idea

Figure:Instances of RMST(3,d) and the introduction of the steiner node as the median.

iFISHtree → order matters

Figure:Different orders of adding steiner nodes result in different weights of the resulting trees. (B): 37, (C):36

iFISHtree \rightarrow inference score

Figure: The definition of *steiner count* of the node in the current tree and the *inference score* of potential steiner nodes to be added.

Input: a set of *k* cell count patterns on *d* gene probes **Output**: a tree with additional steiner nodes if needed and *k* nodes that correspond to *k* input cell count patterns respectively **Initialization**: the initial tree $T_0 =$ a Minimum Spanning tree on *k* cell count patterns under the rectilinear metric

Iteration: from tree $T_i(V_i)$ on node set V_i to $T_{i+1}(V_{i+1})$ on node set V_{i+1} Identify the set *S* of potential steiner nodes from all possible triplets in T_i **While** *S* is not empty

Select the potential steiner node p with minimum inference score in SBuild a Minimum Spanning tree on { $V_i \cup p$ } as $T (V_i \cup p)$

If the weight of $T(V_i \cup p)$ is lower than the weight of $T_i(V_i)$

$$T_{i+1}(V_{i+1}) = T(V_i \cup p)$$

Else

$$S = S \setminus \{p\}$$

Exit condition: *S* is empty

Breast cancer patient 13 metastasis sample

Jijun Tang (CSE)

Case #	In	itial	FISH	trees	iFISH	trees
	Node #	weight	Node #	weight	Node #	weight
B1 IDC	119	230	135	213	132	212
B1 DCIS	143	259	158	241	159	242
B2 JDC	104	238	124	217	123	216
B3_DCIS	106	72	80	100	80	98
B4 JDC	110	232	129	214	129	213
B6 JDC	85	116	90	112	90	111
B7 JDC	59	128	73	116	71	113
B7_DCIS	76	202	84	186	83	184
B9_IDC	94	251	121	222	119	217
B9 DCIS	76	177	89	164	89	162
B10 DCIS	95	154	89	146	89	145
B11_DCIS	80	144	87	136	84	135
B12JDC	112	212	124	201	123	200
B13_IDC	84	140	92	133	92	131
B13 DCIS	43	66	47	63	47	62

Table:Comparison on dataset for real breast cancer samples.

Cervical cancer result

Case #	Ini	tial	FISH	trees	iFISH	ltrees
	Node #	weight	Node #	weight	Node #	weight
C5	140	208	153	195	151	196
C9	130	144	131	143	132	142
C10	72	87	72	87	73	86
C12	63	72	63	72	64	71
C15	66	75	67	74	68	73
C21	63	77	67	73	65	74
C27	49	60	50	59	52	57
C29	76	85	78	83	78	82
C32	160	216	167	209	169	207
C34	67	88	72	83	73	82
C37	71	74	72	73	73	72
C42	157	207	164	199	166	198
C45	126	183	136	172	140	169
C46	87	116	92	110	93	109
C49	128	166	132	162	133	161
C51	76	83	76	83	83	76
C53	64	82	67	82	66	79
C54	123	152	129	146	130	145

Table: Comparison on dataset for real cervical cancer samples.

Growth factor	FISHtrees	FISHtrees	FISHtrees
	=iFISHtree	>iFISHtree	<ifishtree< td=""></ifishtree<>
	S	S	S
0.4	176	23	1
0.4	161	30	9
0.4	162	31	7
0.5	182	18	0
0.5	160	31	9
0.5	152	32	6
	Growth factor 0.4 0.4 0.4 0.5 0.5 0.5	Growth factor FISHtrees =iFISHtrees =iFISHtrees 0.4 176 0.4 161 0.4 162 0.5 182 0.5 160 0.5 152	Growth factor FISHtrees =iFISHtree FISHtrees >iFISHtree 0.4 176 23 0.4 161 30 0.4 162 31 0.5 182 18 0.5 152 32

able:Comparison on simulated datasets.

글 🕨 🖌 글 🕨

э

RMST was shown to be a good model for phylogenetic analysis by using FISH cell count pattern data, but it need efficient heuristics because it is a NP-hard problem.

We presented our heuristic method iFISHtree to approximate the RMST based on medium idea.

Our experiments on simulation and real datasets demonstrate the superiority of our algorithm over previous method.

Our method runs at similar and relatively faster speed than earlier method and is supposed to be better with increasing number of gene markers.

Maximum parsimony analysis of gene copy number data

Maximum Parsimony Method(TNT)

Figure: Tree generated from parsimony phylogeny methods like TNT.

Fitch(bottom up)

Figure: Fitch algorithm: bottom up.

프 + + 프 + Tuesday 4th April, 2017 24/40

э

Figure: Fitch algorithm: up down.

э

$MPT \rightarrow RMST$

Figure: (Top) the input data. (Bottom) two maximum parsimony trees MPT and MPT'. The corresponding RMST and RMST', both of weight 6, shows different steiner nodes number.

Minimizing steiner nodes

Figure: An example to test whether *Leaf*₁ can be optimally "lifted" to its parent node *Node*₆ in MPT.

Jijun Tang (CSE)

Figure: Given the metastatic cervical cancer sample of patient 12, approximate RMST constructed by FISHtree with weight 83, Each white node represents an input cell count pattern, and each red node represents an inferred Steiner node. Branch lengths are shown in blue.

Figure: Given the metastatic cervical cancer sample of patient 12, approximate RMST constructed by iFISHtree with weight 82.

- E

Result—mpFISHtree

Figure: Given the metastatic cervical cancer sample of patient 12, approximate RMST constructed by mpFISHtree with weight 81.

< E

Breast cancer result

Case #	Tree weight (# Steiner nodes)				
	FISHtree	iFISHtree	mpFISHtree	Exact	
B1_IDC	213 (15)	212 (13)	211 (19)	NA	
B1_DCIS	241 (14)	242 (15)	239 (22)	NA	
B2_IDC	217 (15)	216 (20)	211 (22)	NA	
B2_DCIS	56 (2)	56 (2)	55 (3)	NA	
B3_DCIS	100 (7)	98 (7)	98 (10)	NA	
B4_IDC	214 (16)	213 (17)	213 (17)	NA	
B6_IDC	112 (4)	111 (4)	III (6)	NA	
B7_IDC	116 (8)	I I 3 (12)	I I 3 (12)	NA	
B7_DCIS	186 (13)	184 (14)	182 (22)	NA	
B9_IDC	222 (22)	217 (25)	213 (30)	NA	
B9_DCIS	164 (12)	163 (13)	161 (15)	NA	
B10_IDC	128 (4)	128 (4)	127 (4)	NA	
B10_DCIS	146 (6)	I 45 (8)	I 45 (9)	NA	
B11_DCIS	136 (6)	135 (7)	134 (7)	NA	
B12_IDC	201 (9)	200 (10)	198 (15)	NA	
B12_DCIS	161 (9)	161 (10)	I 58 (13)	NA	
B13_IDC	132 (7)	131 (8)	I3I (8)	NA	
B13_DCIS	63 (3)	62 (4)	62 (4)	NA	

Table:Comparison on dataset for real breast cancer samples.

Cervical cancer result

Case #	Tree weight (# Steiner nodes)				
	FISHtree	iFISHtree	mpFISHtree	Exact	
C5	195 (13)	196 (12)	194 (13)	194 (13)	
C6	82 (2)	82 (2)	81 (5)	81 (4)	
C8	103 (6)	103 (6)	100 (9)	100 (8)	
C9	143 (1)	142 (2)	I 42 (5)	I 42 (2)	
C10	87 (0)	86 (1)	86 (1)	86 (1)	
C12	72(1)	71 (2)	71 (2)	71 (2)	
C13	150 (5)	150 (5)	I 49 (7)	149 (7)	
C15	74 (1)	73 (2)	73 (2)	73 (2)	
C18	127 (4)	127 (4)	126 (6)	I 26 (6)	
C21	73 (4)	74 (3)	73 (5)	73 (4)	
C27	59 (1)	57 (3)	57 (2)	57 (3)	
C29	83 (2)	82 (3)	81 (3)	81 (3)	
C30	118 (9)	118 (9)	116(9)	116(10)	
C32	209 (7)	207 (9)	205 (14)	205 (13)	
C34	83 (5)	82 (6)	82 (6)	82 (6)	
C35	67 (1)	67 (1)	66 (2)	66 (3)	
C42	199 (7)	198 (9)	197 (12)	197 (11)	
C45	172 (10)	169 (13)	169 (14)	169 (15)	
C46	110 (5)	109 (6)	108 (8)	108(7)	
C49	162 (4)	161 (5)	161 (7)	161 (7)	
C53	80 (3)	79 (4)	79 (4)	79 (4)	
C54	146 (6)	145 (7)	144 (10)	144 (9)	

Table: Comparison on dataset for real cervical cancer samples.

Probe #	Growth	Best score count (Best score percentage)			
	factor				
		FISHtree	iFISHtree	mpFISHtree	Exact
4	0.4	92 (46%)	137(68.5%)	196 (98%)	200
6	0.4	70 (35%)	98 (49%)	194 (97%)	N/A
8	0.4	41 (20.5%)	69 (34.5%)	196 (98%)	N/A
4	0.5	93 (46.5%)	130 (65%)	194 (97%)	200
6	0.5	68 (34%)	99 (49.5%)	196 (98%)	N/A
8	0.5	40 (20%)	64 (32%)	195(97.5%)	N/A

Table:Comparison on simulated datasets.

WGD exists in 37% of cancer.

Considering large scale change can greatly extend the use of our method.

Chowdhury *et al* have some work in considering large scale gene change.

Find the minimum steiner tree considering large scale change is called Duplication Steiner Minimum Tree (DSMT).

Tuesday 4th April, 2017

34/40

Identify possible large scale changes including WGD.

Remove such branches in the tree generated by Chowdhury *et al*, split the tree into disjoint subtrees.

Reconstruct a new RSMT tree for each subtrees using MPT method. Re-insert the removed branches and thus assemble the final output DSMT tree.

DSMT-Breast cancer

Cell Line	DSMT B	est score
	FISHtree	MPTtree
B1_IDC	217	206
B1_DCIS	150	140
B2JDC	203	189
B3_DCIS	99	97
B4JDC	203	193
B5JDC	64	63
B6JDC	108	106
B6_DCIS	42	43
B7 JDC	116	115
B10JDC	125	123
B11_DCIS	122	121
B12JDC	125	123
B12_DCIS	162	149
B13JDC	132	129
B13_DCIS	63	61

Table: Comparison on the real datasets for DSMT on breast cancer samples.

Jijun Tang (CSE)

36/40

Cell Line	DSMT Best score	
	FISHtree	MPTtree
C6	82	81
C8	95	93
C18	126	122
C24	201	204
C29	80	76
C34	81	82
C53	75	71

Table:Comparison on the real datasets for DSMT on cervical cancer samples.

Probe #	Growth factor	DMST Best score count (Best score percentage)	
		FISHtree	MPTtree
4	0.4	175 (87.5%)	191 (95.5%)
6	0.4	145 (35%)	194 (97%)
8	0.4	101 (50.5%)	199 (99.5%)
4	0.5	178 (89%)	189 (94.5%)
6	0.5	147 (73.5%)	193 (96.5%)
8	0.5	93 (46.5%)	200 (100%)

Table: Comparison on simulated datasets for DMST.

We presented our heuristic method MPFISHtree to approximate the RMST based on Maximum Parsimony phylogeny reconstruction (TNT). We extend our MPFISHtree to consider large genome change including WGD as DMST.

Our experiments on simulation and real datasets demonstrate the superiority of our algorithms over previous methods.

Our method tried to produce the solution with the minimum number of steiner nodes.

Our method can be extended to apply on other data type such as copy number variation(CNV) data.

The End

Tuesday 4th April, 2017

40/40

Jijun Tang (CSE)